A proof of McKee's eulerian-bipartite characterization
نویسنده
چکیده
A proof is given of the result about binary matroids that implies that a connected graph is Eulerian if and only if every edge lies in an odd number of circuits, and a graph is bipartite if and only if every edge lies in an odd number of cocircuits (minimal cutsets). A proof is also given of the result that the edge set of every graph can be expressed as a disjoint union of circuits and cocircuits. No matroid theory is assumed.
منابع مشابه
On Tensor Product of Graphs, Girth and Triangles
The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملA Short Proof of Guenin's Characterization of Weakly Bipartite Graphs
We give a proof of Guenin’s theorem characterizing weakly bipartite graphs by not having an odd-K5 minor. The proof curtails the technical and case-checking parts of Guenin’s original proof.
متن کاملOn the Parity of Graph Spanning Tree Numbers
Any bipartite Eulerian graph, any Eulerian graph with evenly many vertices, and any bipartite graph with evenly many vertices and edges, has an even number of spanning trees. More generally, a graph has evenly many spanning trees if and only if it has an Eulerian edge cut. ∗Work supported in part by NSF grant CCR-9258355 and by matching funds from Xerox Corp.
متن کاملAn On-line Competitive Algorithm for Coloring P_8 -free Bipartite Graphs
The existence of an on-line competitive algorithm for coloring bipartite graphs remains a tantalizing open problem. So far there are only partial positive results for bipartite graphs with certain small forbidden graphs as induced subgraphs, in particular for P7-free bipartite graphs. We propose a new on-line competitive coloring algorithm for P8-free bipartite graphs. Our proof technique impro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 84 شماره
صفحات -
تاریخ انتشار 1990